On Intrinsic Generalization of Low Dimensional Representations of Images for Recognition
نویسندگان
چکیده
Low dimensional representations of images impose equivalence relations in the image space; the induced equivalence class of an image is named as its intrinsic generalization. The intrinsic generalization of a representation provides a novel way to measure its generalization and leads to more fundamental insights than the commonly used recognition performance, which is heavily influenced by the choice of training and test data. We demonstrate the limitations of linear subspace representations by sampling their intrinsic generalization, and propose a nonlinear representation that overcomes these limitations. The proposed representation projects images nonlinearly into the marginal densities of their filter responses, followed by linear projections of the marginals. We have used experiments on large datasets to show that the representations that have better intrinsic generalization also lead to a better recognition performance.
منابع مشابه
Intrinsic generalization analysis of low dimensional representations
Low dimensional representations of images impose equivalence relations in the image space; the induced equivalence class of an image is named as its intrinsic generalization. The intrinsic generalization of a representation provides a novel way to measure its generalization and leads to more fundamental insights than the commonly used recognition performance, which is heavily influenced by the ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملAn Image Retrieval Method Based on Manifold Learning with Scale-Invariant Feature Control
Aiming at the problem of the traditional dimensionality reduction methods cannot recover the inherent structure, and scale invariant feature transform (SIFT) achieving low precision when reinstating images, an Image Retrieval Method Based on Manifold Learning with Scale-Invariant Feature is proposed. It aims to find low-dimensional compact representations of high-dimensional observation data an...
متن کامل